明略科技以数据与知识双驱动助力数字政府建设
增加一些特殊的预警规则。比如“趋势增长预警规则”,当拥堵指数连续3天比率增长(比如说第一天2%,第二天4%,第三天6%),即使拥堵指数没有到我们设定的指标红线,但是它一直在增长,那么系统也应该预警,要事前预警,而不能等拥堵指数到了指标红线再预警。 城市运行管理与服务过程中的第三类知识是主题模型和统计加工的方法。 不同的城市最常见的人口库和法人库等等,包含公民的教育科研信息、信用记录等等,将知识融合进主题模型和数据统计加工的方法中去,会使我们每个城市的数据建设和建库的时候,规则更统一,建设效率更高,避免走很多弯路,数据模型积累是城市管理经验和管理知识的一种固化和下沉。 城市运行管理与服务过程中的第四类知识,文本中的规则要素。在城市运行的过程中有大量的文档,比如“干部评价”。干部评价的文档就是我们每年要进行干部的考核,这里涉及大量的文字描述。可以使用NLP自然语言处理技术对所有干部评价的历史数据进行分析,把干部评价中的文本要素提取出来,比如性格、专业技能(如经济管理)、重大项目经验(如参与奥运会的筹办工作)等等,我们就能对这期的领导班子的构成进行分析,根据岗位需求和领导者的能力更高效地实现“人岗匹配”。 另外一个例子是,每个城市的预算的使用都会有一些规定,比如PPP项目预算,不能超过本市GDP的0.5%。这些文本中的关键要素和规定指标其实都可以提取出来,如果项目预算数据和城市预算数据整个打通,当您在申报一个新的审批项目时,可以看到审批的总金额是否达到预警线,甚至告诉你离预警线只差20%。这些都是非常重要的藏在文档中的知识,可以通过智能技术将这些大量地非结构化数据转化成“知识”,来辅助决策。 最后一个领域,我们要介绍的是知识图谱技术在数字城市建设中的应用。例如最近科技抗疫中频繁使用的健康码。健康码实际上是一个“索引”或者抓手,更重要的是健康码背后的“健康档案”,市民的“健康档案”是城市知识图谱的重要组成部分。这些档案记录了你有没有去过高风险区域,最近体温是否正常等等。除了自然人,法人机构、土地建筑等等也有自己的代码,这些代码构成了城市主体的唯一表识标准。当每一个实体(自然人、法人机构、土地建筑等)都有唯一的代码,且这些代码互相打通,我们就可以建立城市中的人、事、地、物、组织的关系网络,利用知识图谱技术实现对密切接触人员的动态跟踪。 除了城市健康码之外,知识图谱在精准帮扶中也起到了重要作用,通过知识图谱可以分析帮扶对象两三度关联人群的属性和行为进行分析,将帮扶政策落实给真正需要的人。 综上所述,我们可以将数字城市平台建设中的工作分为两部分,一部分是弱行业属性的,也就是数据的加工治理,另一部分就是被我们称为知识的部分,它是强行业属性的,涉及到如何抽象数据模型的问题。比如,在金融领域,判断合规问题,是否符合管理流程;在交通领域,判断某个地方人群密集度、交通拥挤程度,在数据分析基础上进行交通预警,等等,解决这些强行业属性的问题使用的数据引擎、工具、可复用组件和流程,形成行业知识库,也叫做行业知识的落地。 为解决人机交互过程中现存的痛点,在组织智能的架构下打通感知与认知,实现人机协同,明略科技提出“HAO”智能理论,融合人类智能、人工智能和组织智能。 其中“组织智能”是非常集中的“知识”体现。 目前,我们看到的挑战是,在实现数据和知识双重驱动的过程中,知识的形式比较多样,并且,相比数据来说,知识更加难感知、难提取、难固化。但是,长远来看,数字城市建设的重心和难点会从数据的汇聚转到数据的应用,从解决数据的问题到解决行业知识的问题。这是一个长期的过程,一方面需要横向拉通(技术、平台、引擎、数据)与纵向深入结合,一方面需要领域知识与技术服务融合。从数据的单驱动逐渐转换到数据知识的双驱动,不断地提高现代化城市的治理水平和智能化程度。 (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |