加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 交互 > 正文

华为、腾讯、百度扎堆进入的自动驾驶仿真市场,到底藏着怎样的秘密?

发布时间:2020-03-11 23:30:04 所属栏目:交互 来源:A5专栏 
导读:提到自动驾驶的商业竞争,车联网无疑是其中最为惨烈的一个领域,里面充斥着各种巨头博弈、屌丝逆袭的励志故事。 可是,自动驾驶赛道的复杂性远远不是台面上所显露出的那么简单。 当自动驾驶进入到以Robotaxi为代表的公开道路测试阶段时,如何提升测试效率

腾讯认为,在场景的几何还原上,模拟仿真平台要做到三维场景仿真和传感器仿真,让环境和测试车辆条件都与现实世界相同;在场景的逻辑还原上,要在虚拟世界中模拟出测试车辆的决策规划过程;在场景的物理还原上,需要模拟出车辆的操控和车身动力学作用结果。

三种层次的还原之后,才能在虚拟世界中看到与现实世界无限接近的自动驾驶测试结果。同时仿真平台还要满足高并发的特点,实现所有场景下车辆反应的排列组合。

敲黑板,划重点。

说了那么多的三维重建,TAD Sim的侧重还是在自动驾驶的模拟仿真测试上。 腾讯后手还藏了一个大招,在模拟仿真平台、高精地图平台和数据云平台的基础之上,腾讯还推出了一个城市级的仿真平台,构建了一个运行在云端,与现实物理世界平行的虚拟世界。

城市仿真不仅包含静态的环境信息,也包含交通、人流等动态信息,还可在其中叠加诸如交通流这类虚拟信息,既可支撑自动驾驶的开发和安全验证,还可为智慧城市、智能交通的建设助力。

不难看出,在模拟仿真市场的竞争中,腾讯最大的优势是把握住了“仿真”二字,如同电影《头号玩家》中的“绿洲“一样,在虚拟世界中最大程度的还原真实世界。

像腾讯与国家智能网联汽车(长沙)测试区仿真实验室的合作项目,就是基于高精度地图和模拟仿真技术,将对测试区的地理全貌进行数字化建模,实现在仿真环境下进行安全、高效的智能汽车实验。

此外,腾讯还认为闭环的数据应用体系,提升数据利用效率,是自动驾驶产品落地的关键。

腾讯布局自动驾驶云生态的开发平台,则基于云端存储及算力支撑,构建了数据采集管理、样本标注、算法训练评测、诊断调试、云端仿真、实车反馈闭环全流程云服务,提供支撑自动驾驶研发的全链路云服务和开发平台。

2、华为:云+AI+软硬件+芯片的组合生态

华为从自动驾驶的数据服务入手,继而延伸到训练服务和仿真服务的领域。

众所周知,自动驾驶测试会产生极为庞大的数据,除了数以百亿技的测试里程之外,一辆自动驾驶测试车1小时就能产生约8TB的数据,一天按测试8小时计算,就会有64TB的数据。一个月按22天工作日则产生约1.3PB/月的数据,但其中有效数据仅为0.05%,同时还有80万张/车/天图片有待人工标识。

此外,现有的仿真工具多为烟囱式孤岛,分散,不利于大数据的统一、AI能力的统一构建,及高效运营管理。

华为的逻辑是通过“八爪鱼”构建一个按需获取的全栈云平台,除了可以迈过数据处理这座高山,还能覆盖自动驾驶的模型、训练、仿真、标注等全生命周期业务。因而“八爪鱼”可以向用户提供以下几种核心能力。

· 处理海量数据,自动化挖掘及标注,能够节省70%以上的人力成本;

· 软硬件加速,平台提供华为自研昇腾910 AI芯片和MindSpore AI框架能大幅提升训练及仿真效率;

· 丰富的仿真场景,高并发实例处理能力:通过集成场景设计和数据驱动的方法,合计提供超过1万个仿真场景;系统每日虚拟测试里程可超过500万公里,支持3000个实例并发测试;

· 云管端芯协同,车云无缝对接:Octopus天然支持无缝对接MDC(移动数据中心)等车端硬件平台和ADAS系统,实现车云协同;

以上可以看出,华为的自动驾驶仿真能力并不是单独出现的,而是作为华为“八爪鱼”生态中的一种能力而存在,仿真能力是整个生态数据闭环的一个节点,当这个节点与其他环节产生协同合作时,才能体现出“八爪鱼”生态的优势。

我们可以注意到,“八爪鱼”并非仅仅是云+AI的结合体,整个生态中还包含芯片、MDC等车端硬件平台和ADAS系统,华为表示,未来还会将高精地图、5G及V2X技术等能力集成到“八爪鱼”中,如是看来,“不造车”的华为在仿真市场的布局颇为宏大。

3、百度:补动力仿真短板

百度在模拟仿真领域也拥有较强的实力,其主要体现在两个方面。

首先,另辟蹊径提升仿真的“真实性”。

去年3月百度论文《AADS:Augmented autonomous driving simulation using data-driven algorithms》登上《Science》杂志子刊《Science Robotics》,该论文提出了一套全新的自动驾驶仿真系统:增强现实的自动驾驶仿真系统(AADS)。

有别于传统的自动驾驶仿真环境都根据游戏引擎或高保真计算机图形创建的方式,AADS系统是一种以数据驱动的端到端自动驾驶仿真方法,通过模拟交通流来增强现实世界图像,进而创建逼真的、媲美现实世界渲染的仿真场景。

其次,Apollo平台去年7月迎来5.0版升级的时候,新增了车辆动力学模型。

传统的建模方式在模型的复杂度、模型的精准度、模型的可迁移性、可扩展性等维度上都具有很多局限性。Apollo5.0将传统的车辆动力学建模方式升级到基于机器学习的Apollo动力学模型,这一技术一下将传统方式建模结果在误差上减少了80%。

可以看出,百度在模拟仿真市场的打法强调技术的“独占性”,即人无我有,人有我强,技术具有非常鲜明的“百度”特色。

看似性感的模拟仿真也有难题

抛开陈腐的技术和标准之争,回到现实的商业层面,仿真平台的最终客户是谁?

单凭大大小小的自动驾驶研发公司显然无法支撑起一个百亿美元级的市场,且当自动驾驶技术与汽车量产结合,事情又回到了原点,如何获得主机厂的信任,突破主机厂的壁垒?在“智能相对论”看来,模拟仿真遇到了和车联网一样的问题。

1、既要懂“仿真”,也要懂汽车

从自动驾驶技术的研发来看,当前的模拟仿真平台似乎都能满足需求,但如果从自动驾驶汽车的研发需求来看,国内这些IT巨头的仿真平台就有那么些“不够看”了。

首先,IT巨头们的优势能力集中在云、数据处理、软件等层面,在底盘、芯片、以及汽车核心零部件等硬件方面缺乏足够的数据和技术积累,直白的说,就是不“懂”汽车。

其次,汽车仿真是一项跨学科的综合技术,其中包括了计算机图形、多媒体、传感器、光学和显示、材料、电子半导体、动力学等多项技术,但大多数IT企业只熟悉少数门类,这也造成现在的仿真平台大多体现真实世界的“还原”能力,即IT企业的技术长项上来。

2、平地起高楼,没有地基难生根

如果将自动驾驶汽车视为传统汽车的升级,那么自动驾驶的仿真亦是传统汽车仿真的升级。这也意味着只需在传统汽车仿真的基础上进行延展即可进化成自动驾驶仿真。

(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读