AlphaWar兵棋推演:虚拟硝烟中的AI指挥艺术与决胜智慧
一、深度学习和知识图谱的缺陷 人工智能经历了几番沉浮,迎来了第三次发展浪潮,当前取得的进展突出体现在:以知识图谱为代表的知识工程和以深度学习为代表的机器学习等相关领域的发展。 1、深度学习 深度学习作为一种结合了统计机器学习与人工神经网络的新学习方法,其与传统模式识别方法的最大不同在于,它能够利用深度神经网络从海量数据中自动学习有效的层次化特征表示。得益于大规模标注数据,目前深度学习在语音识别、图像识别等领域取得了优异效果,然而在某些方面仍存在着局限性,主要表现在: 01 对数据的强依赖:—深度学习需要大量标注数据来训练才能达到较好的泛化能力,数据量的大小直接影响深度学习模型的推理效果。但在很多实际应用场景中,我们难以找到充足的高质量训练数据。另一方面,用于训练深度学习模型的数据需要耗费大量的人力进行收集和标注,且手动标注的信息具有一定的局限性。 02 缺乏对常识的学习:—人工智能的知识表示包括专业知识与常识知识。常识是指人类在生活中总结出来的科学知识,当人类遇到新情况时,能够通过既有的常识来推测和判断。而神经网络学习的本质是对相关性的挖掘和记忆,缺乏推理能力和抽象能力。这一缺陷使其在面对新情况时无法像人类一样拥有“举一反三”的能力。 03 缺乏可解释性:—深度学习模型是一种端到端的学习,输入的是原始数据(始端),输出的直接是最终目标(末端),中间的学习和预测过程不可知。类似一个黑箱(Black Box)系统,其推理效果很好,却不知道为何好,这也大大制约了深度学习的应用推广。比如在投资领域,不可解释的投资相当于投机。 2、知识图谱 知识图谱本质上是一种语义网络,表达了各类实体、概念及其之间的语义关系。相对于传统知识表示形式,知识图谱具有实体/概念覆盖率高、语义关系多样、结构友好以及质量较高等优势,日益成为人工智能时代最为主要的知识表示方式。然而,目前的知识图谱应用还处在初期的阶段,其落地难点主要有以下几方面: 01 高质量图谱构建难题:—知识图谱的构建是整个应用链条的第一步,图谱构建的质量直接决定了上层应用的效果。由于各种原因,数据大部分以非结构化形式存储,而面向非结构化数据的知识抽取在准确度、完整度等方面面临技术挑战。 02 依赖专家经验:—知识图谱本质是一种知识的组织形式,本身不具备学习能力,图谱的构建涉及到了大量的人工设计和人力劳动,特别是行业知识图谱尤其依赖领域从业人员对业务逻辑的精准梳理。因此,知识的爆炸式增长对知识图谱构建的可移植性、可扩展性均提出更高要求。 03 覆盖率制约应用表现:—知识图谱构建的目的不仅在于数据的可视化,还需要赋予业务信息在实际应用场景中的可计算能力,但当前知识图谱普遍存在覆盖率低、数据稀疏和更新缓慢等问题,限制了知识图谱分析挖掘优势的发挥和落地效果。 综合来看,深度学习与知识图谱在技术本身与应用落地方面均存在一定缺陷,许多结合二者优势的新方法随之而生。 二、认知中台在策略推演领域的应用 中台的核心价值在于对资源整合运用效率的最大化。构建中台来支撑业务衔接,不仅能够帮助实现AI技术的可落地方案,更能够实现能力的复用,取得规模化效应。 在策略推演领域,以分布式图存储为基础,集成图计算与可视化分析引擎的认知中台,能够帮助挖掘、发现、推演出相关隐藏知识或跨领域新知识,促进决策推荐的准确性和及时性,提升对策略推演过程及结果的可解释性。在金融营销与风控、金融量化投资、军事兵棋推演等领域有广阔的应用前景。 1、金融营销与风控 众所周知,金融行业两大核心业务是:营销和风控,两者的核心都是基于数据对客户行为进行分析和对未来场景变化进行预判。传统的数据分析技术建立在关系型数据库基础上,难以发现数据间的多层级的“隐性关系”。 利用知识图谱可以将金融领域内所有实体(包括:公司、人物、地名、产品、资讯、研报、事件等)和关系(股权关系、竞争关系、对外投资等)用图的形式进行表达,形成一个“金融多关系图”,从而帮助金融从业人员从事件、空间等多维度更好的分析客户交易行为,有助于建立客户画像,进行精准营销。 其次,图数据库、图挖掘、图计算模型等技术特别适用于复杂关系网络下的账户关联关系挖掘及资金交易流转追踪,能够帮助发现传统风控场景下无法发现的包括信用卡套现、团伙骗贷、跨境洗钱等复杂多变的欺诈风险行为。 2、金融量化投资 近年来,以追求绝对收益为目标的量化对冲投资策略以其风险低、收益稳定的特性,成为机构投资者的主要投资策略之一。简单来说,量化投资就是用机器构建一个框架,在这个框架下做交易。运用机器学习技术可以有效地找到数据之间的关系,并使用它来预测或分类新数据,成为量化投资框架构建的新的有效策略。 其次,利用知识图谱对影响投资的事件进行实体和关系抽取,比如公司与公司相关的股票信息等实体,比如可能影响股票交易价格行为(管理层变动、新品发布等)的事件,构建金融量化投资知识图谱,再通过大量表示学习方法,将知识图谱中的实体和关系转化为高维连续向量,输入到深度学习模型中,使其学习每个事件在发生后给市场带来的影响,能够进一步提升金融量化投资策略的实战效果。 3、军事兵棋推演 随着信息化技术在现代战争中的应用,一体化联合作战已经成为现代战争的主要作战样式,战场要素不断增多,战场范围呈现出全球化的趋势。这一背景下的兵棋推演系统面临着推演要素不断增多、推演范围不断扩大的挑战。 兵棋推演的核心是在人机协同环境中的不完全信息下的动态博弈和实时对抗,鉴于兵棋推演中规则和计算等方面的复杂性,运用人工智能系统,能够更加快速准确的进行态势分析和战略决策,并最大程度的减少错误的发生。 在推演时,兵棋推演系统自动搜集战场态势数据,记录每个作战单位的属性,作战半径、攻击力、前进速度、掩护的使用情况、从属关系等,并通过收集到的战场态势信息,在模拟对抗中学习战术规则、获取作战经验并优化策略,进而进行战前态势分析、科学化制定作战方案以及提升作战过程中的实时决策能力和突发情况应急能力。 三、什么是兵棋推演 如果你清楚你的问题,你不需要兵棋推演;当你不知道如何应对不确定复杂局势时,你可能需要兵棋推演。 ——《海湾打击》兵棋设计者,马克.赫尔曼 (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |