隐私保护之殇:数据匿名也有“bug”?
另外,则是来自技术角度的迭代更新,针对安全性不足的数据匿名现状,已经出现了基于差分隐私的数据匿名化隐私保护模型研究。差分隐私(differential privacy)是密码学中的一种手段,旨在提供一种当从统计数据库查询时,最大化数据查询的准确性,同时最大限度减少识别其记录的机会。 实际上,差分隐私也利用了统计学。该技术可以实现:向一个人的使用习惯样本中增加噪声,保证数据相对模糊与匿名,随着越来越多人呈现出相同的使用习惯,开始识别总结出共性。一个人的数据可能不准确,但是大量用户的数据可以得出相对准确的结论。这种情况下,即使有人攻击了数据库,也只能看到系统化的共性信息,不能精确识别具体的个人信息。苹果、Facebook、华为都在用该技术来来帮助发掘其大量用户的使用习惯。 值得一提的是,《MIT科技评论》评选的2020年十大突破技术中,差分隐私榜上有名。 不过,由于差分隐私是一项仍在探索中的技术。门槛较高,所以投入成本也想要较高。其处理过程对于人才资源的需求较大,同时也带来新的问题,多人的介入与隐私保护也会出现一定的冲突。为解决此问题,市面上一些企业注入了自动化机器学习的方法。 显然,隐私保护问题的解决一定是多学科、多技术流派融合的。 唯一不变的就是变化,“安全是动态话题”已经是老生常谈,数据隐私的安全也是一样。匿名数据只是为目前的数据裸奔问题提供了一个相对明朗可行的解决方法,并不是绝对安全的保护屏障。我们能做的只有随变化而变化,甚至是走在变化的前面。 (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |