加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 评论 > 正文

5G毫米波通信射频技术

发布时间:2020-09-18 09:30:14 所属栏目:评论 来源:站长网
导读:简介 当无线产业开始创建5G时,2020 年显得那么遥远。而现在就快到 2020 年,这无疑将是属于5G的十年。新闻每天都会报道新的现场试验和即将进行的商业5G部署。对于无线产业来说,这是一个非常令人兴奋的时刻。目前,行业 5G 焦点主要在增强移动宽带方面,

图 6 展示了一个基于组件的高性能位到毫米波无线电的方框图示例,构成 ADI 公司的宽 RF 和混合信号产品系列。该信号链经证实在 28 GHz 上支持连续的 8× 100 MHz NR 载波,具有出色的误差矢量幅度(EVM)性能。有关此信号链及其演示性能的更多详细信息,可参见 ADI 公司的 5G 毫米波基站视频。8

5G毫米波通信射频技术

图 6. 宽带位到毫米波无线电框图

让我们来讨论一下数据转换器。在图 6 的示例中,我们显示了所 使用的直接高中频变送器发射和高中频接收器采样,其中数据 转换器在中频进行发射和接收。在能够合理实现的情况下,中 频要尽可能高,以避免在 RF 下的图像滤波困难,从而将中频驱 动到 3 GHz 及以上。幸运的是,先进的数据转换器能够在这种频 率下工作。 AD9172 是一款高性能、双通道、16 位 DAC,支持高达 12.6 GSPS 的采样速率。该器件具有 8 通道、15 Gbps JESD204B 数据输入端口、高性能片内 DAC 时钟倍频器和数字信号处理功能, 支持带宽和高达 6 GHz 的多频段直接至 RF 信号生成。在接收器中,我们显示了双通道、14 位、3 GSPS ADC AD9208。 该器件内置片内缓冲器和采样保持电路,专门针对低功耗、小尺寸和易用 性而设计。该产品设计支持通信应用,能够实现高达 5 GHz 的宽带宽模拟信号直接采样。

在发射和接收中频阶段,我们建议将数字增益放大器从单一转换为平衡,反之亦然,以避免使用巴伦。这里,我们在发射链中显示 ADL5335 在接收链中显示 ADL5569 作为高性能宽带放大器的示例。

对于中频和毫米波之间的上变频和下变频,我们最近推出了一种 基于硅的宽带上变频器 ADMV1013 和下变频器 ADMV1014。这些宽带变频器件的操作范围为 24.5 GHz 至 43.5 GHz。此频率覆盖范围广泛,因此设计人员用一种无线电设计即可处理目前定义的所有 5G 毫米波频段(3GPP 频段 n257、n258、n260 和 n261)。两种器件 均支持高达 6 GHz 的中频接口和两种变频模式。如图 6 所示,这两种器件都包括片内 4×本振(LO)倍频器,且 LO 输入范围为 5.4 GHz 至 11.75 GHz。ADMV1013 既支持从基带 I/Q 直接转换为 RF,也支持从中频进行单边带上变频。它在 24 dBm 的高输出 IP3 提供 14 dB 的转换增益。如果在单边带变频中实现,如图 6 所示,该器件提供 25 dB 边带抑制。ADMV1014 既支持从基带 I/Q 直接转换为 RF,也支持镜像抑 制下变频至中频。该器件提供 20 dB 的转换增益、3.5 dB 的噪声指数和–4 dBm 的输入 IP3。镜像抑制模式中的边带抑制为 28 dB。

RF 链中的最后一个组件是 ADRF5020 宽带硅 SPDT 开关。ADRF5020 在 30 GHz 时提供 2 dB 的低插入损耗和 60 dB 的高隔离度。

最后,我们来讨论频率源。考虑到本振可能占据 EVM 预算的很大一部分,因此使用一个相位噪声极低的来源来生成毫米波本振(LO)至关重要。

ADF4372 是一种具有行业领先集成 PLL 和超低相位噪声 VCO 的宽带微波频率合成器,输出功率可达 62.5 MHz 至 16 GHz。结合外部环路滤波器和外部基准频率使用时,可实现小数 N 分频或整数 N 分频锁相环(PLL)频率合成器。8 GHz 的 VCO 相位噪声在 100 kHz 偏移时为–111 dBc/Hz,在 1 MHz 偏移时为–134 dBc/Hz。

图 6 中的方框图对于任何考虑 28 GHz 和 39 GHz 频段毫米波设计的设计人员来说都是一个很好的起点,适合与需要高性能宽带无线电的各种波束合成前端配合使用。ADI 的 射频、微波和毫米波 产品选型指南 中也列出了许多组件,其他信号链架构或类似高频应用的设计人员可能会对这些组件感兴趣。

总结

最近几年,毫米波无线电发展迅猛,离开实验室发展到了现场试验,并将在接下来的几个月进行商业部署。不断发展的生态系统和新出现的用例要求波束合成前端具有一定的灵活性,但正如讨论的那样,有一些适合近天线设计的技术和方法可供选择。无线电的宽带特性(位到毫米波)需要前沿技术,但基于 硅的技术正在迅速发展,以满足混合信号和小信号域的要求。基于目前可用的组件给出了一个高性能无线电设计示例。

随着 5G 生态系统的不断发展,ADI 公司将继续利用我们的领先技术和信号链解决方案,支持客户为新兴的 5G 毫米波市场开发差异化系统。

参考电路

1 Thomas Cameron。 ““微波行业的 5G 机遇与挑战。” Microwave Journal, 2016 年 2 月。

2 Theodore S. Rappaport, Yunchou Xing, George R. MacCarthy, Jr., Andreas F. Molisch, Evangelos Melios 和 Jianhua Zhang。 “第五代(5G)无线网络毫米波通信概述——以传播模型为重点。” IEEE Transactions on Antennas 和 Propagation, 5G 特刊, 2017 年 11 月。

3 3GPP 38.104 技术规范。 基站(BS)无线电发射和接收(Release 15)。

4 Thomas Cameron。 “5G 毫米波无线电 RF 技术。”ADI 公司,2016 年 11 月。

5 Thomas Cameron。 “5G 毫米波无线电的架构与技术。”2018 国际固态电路会议,Session 4,面向 5G 和未来的毫米波无线电,2018 年 2 月。

6 简报:为新一代(5G)无线宽带识别和开辟大量新高频频谱的频谱前沿方案。

7 Donald C. Lie, Jill Mayeda 和 Jota Lopez。 “近期高效毫米波 5G 线性功率放大器设计简短调查。” 2017 年 IEEE 第 60 届国际中西部电路和系统研讨会(MWSCAS),马萨诸塞州波士顿,2017 年 8 月。

8 5G 毫米波基站。ADI 公司。


(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读