加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 评论 > 正文

芯片巨头们都在争相研发的3D封装关键技术究竟有多难?

发布时间:2020-08-31 11:11:43 所属栏目:评论 来源:站长网
导读:代工厂、设备供应商、研发机构等都在研发一种称之为铜混合键合(Hybrid bonding)工艺,这项技术正在推动下一代2.5D和3D封装技术。与现有的堆叠和键合方法相比,混合键合可以提供更高的带宽和更低的功耗,但混合键合技术也更难实现。 异构集成是铜混合键合

代工厂、设备供应商、研发机构等都在研发一种称之为铜混合键合(Hybrid bonding)工艺,这项技术正在推动下一代2.5D和3D封装技术。与现有的堆叠和键合方法相比,混合键合可以提供更高的带宽和更低的功耗,但混合键合技术也更难实现。

芯片巨头们都在争相研发的3D封装关键技术究竟有多难?

异构集成是铜混合键合的主要优势

铜混合键合并不是新鲜事,从2016年开始,CMOS图像传感器开始使用晶圆间(Wafer-to-Wafer)的混合键合技术制造产品。具体而言,供应商会先生产一个逻辑晶圆,然后生产一个用于像素处理的单独晶圆,之后使用铜互连技术将两个晶圆结合在一起,再将各芯片切成小片,形成CMOS图像传感器。

混合键合与先进封装的工作方式几乎相同,但前者更复杂。供应商正在开发另一种不同的变体,称为裸片对晶圆(Die-to-Wafer)的键合,可以在内插器或者其他裸片上堆叠和键合裸片。KLA的行销高级总监Stephen Hiebert表示:“我们能观察到裸片对晶圆的混合键合发展强劲,其主要优势在于它能够实现不同尺寸芯片的异构集成。”

这一方案将先进封装提高到一个新的水平,在当今先进封装案例中,供应商可以在封装中集成多裸片的DRAM堆栈,并使用现有的互连方案连接裸片。通过混合键合,DRAM裸片可以使用铜互连的方法提供更高的带宽,这种方法也可以用在内存堆栈和其他高级组合的逻辑中。

Xperi的杰出工程师Guilian Gao在最近的演讲中说:“它具有适用于不同应用的潜力,包括3D DRAM,异构集成和芯片分解。”

不过这是一项极具挑战性的工作。裸片对晶圆的混合键合需要原始的芯片、先进的设备和完美的集成方案,但是如果供应商能够满足这些要求,那么该项技术将成为高级芯片设计的诱人选择。

传统上,为改进设计,业界开发了片上系统(SoC),可以缩小每个具有不同功能的节点,然后在将它们封装到同一裸片上,但是随着单个节点正变得越来越复杂和昂贵,更多的人转向寻找新的替代方案。在传统的先进封装中组装复杂的芯片可以扩展节点,使用混合键合的先进封装则是另一种选择。

GlobalFoundry、英特尔、三星、台积电和联电都在致力于铜混合键合封装技术,Imec和Leti也是如此。此外,Xperi正在开发一种混合键合技术,并将该技术许可给其他公司。

已有IC封装技术的特色

IC封装类型众多,细分封装市场的互连类型,包括引线键合、倒装芯片、晶圆级封装(WLP)和直通硅通孔(TSV)。互连是将一个芯片连接到封装中的另一个芯片,TSV的I/O数量最高,其次是WLP、倒装芯片和引线键合,混合互连比TSV密度更高。

TechSearch称 ,当今的封装大约有75%至80%是基于引线键合,即使用焊线机细线将一个芯片接到另一个芯片或基板上,引线键合多用于商品包装和存储器裸片堆叠。

在倒装芯片中,使用各种工艺步骤在芯片顶部形成大量的焊料凸块或微小的铜凸块,然后将器件翻转并安装在单独的芯片或板上。凸块落在铜焊盘上,形成点连接,称之为晶圆键合机的系统键合裸片。

WLP是直接在晶圆上进行封装测试,之后再切割成单颗组件。扇出晶圆级封装(Fan-out WLP)也是晶圆级封装中的一种。Veeco的一位科学家Cliff McCold在ECTC的演讲中说,“采用WLP能够进行较小的二维连接,从而将硅芯片重新分派到更大的面积上,为现代设备提供更高的I/O密度,更高的带宽和性能。”

TSV用于高端2.5D/3D封装。在2.5D封装中,裸片堆叠在内插器上,内插器中包含TSV,中间层是连接芯片和电路板之间的桥梁,可提供更多的I/O和带宽。

2.5D封装和3D封装的类型众多,高带宽存储器(HBM)就是一种3D封装类型,这一方法是将DRAM裸片堆叠在一起。将逻辑堆叠在逻辑上或将逻辑置于内存上的方法也正在出现。英特尔产品集成总监Ramune Nagisetty表示,逻辑堆叠在逻辑上的方法还没有普及,逻辑堆叠在内存上的方法目前正在兴起。

在封装中,目前备受关注的是小芯片。小芯片本身不是一种封装类型,但芯片制造商的库中可以拥有一个模块化裸片或多种小芯片,客户可以混合搭配这些芯片,并使用封装中裸片对裸片(Die-to-Die)的互连方案进行连接。

小芯片可以存在于现有的封装类型或新的体系架构中。“这是一种架构方法,” UMC(联华电子)负责业务开发的副总裁Walter Ng说,“它正在为任务需求优化解决方案,这些需求包括速度、热量、功率等性能,有时还需要考虑成本因素。”

当下最先进的2.5D封装和3D封装是供应商所使用的现有互连方案和晶圆键合器。在这些封装中,使用铜凸块或铜柱堆叠和连接裸片,基于焊接材料,凸块和支柱在不同的设备之间提供小而快速的电气连接。

最先进的微型凸块的间距是40μm至36μm,这里的间距包括一定的空间距离,例如40μm间距就是25μm的铜柱加上15微米的空间距离。

对于细间距的要求,业界使用热压缩连接(TCB)。用一个TCB键合器取出一块裸片,并将其凸块与另一块裸片的凸块对齐,再用压力和热力将凸块键合起来。不过,TCB过程缓慢,且铜凸块也正在逼近物理极限。一般而言,视极限间距为20μm,但也有一部分人在尝试延伸凸点间距。

Imec正在开发一种使用TCB实现的10μm间距技术,7μm和5μm也正在研发中。“40μm凸块间距有足够的焊接材料来补偿电流变化。当缩放到10μm或更小的间距时,情况将会发生变化,” Imec的高级科学家Jaber Derakhshandeh在最近的ECTC会议上的一篇论文中说,“在细间距的微泵中,电流量和良好的连接取决于TCB工具的精度、错位、倾斜以及焊料的变形量。”

为了延长微型凸块的发展寿命,Imec开发了一种金属垫板工艺,同以前一样,裸片上仍然有微型凸块,不同的是,在Imec工艺中,裸片上还有假金属微凸块,这类凸块类似于支撑架构的小梁。

Derakhshandeh说:“在3D裸片对晶圆的堆叠中引入了一个假金属微凸块,以减小TCB工具的倾斜误差,并控制焊料变形,从而使粘合裸片不同位置的电阻和成形接头的质量相同。”。

混合键合是TCB的补充

在某些时候,微型凸块/支柱和TCB可能会用光,这时候就需要混合键合,它可以用在微凸技术碰壁后或者在此前插入。

不过微型凸块不会很快在市场上消失,微型凸块和混合键合技术都将在市场上占据一席之地,这取决于具体的应用。

目前混合键合技术正在发展,台积电最有发言权,其正在研究一种叫做集成芯片系统(SoIC)的技术。使用混合键合,台积电的SoIC技术可以实现低于微米的键合间距。据悉,SoIC的缓冲垫间距是现有方案的0.25倍。高密度版本可以实现10倍以上的芯片到芯片的通信速度,高达近2000倍的带宽密度和20倍的能源效率。

(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读