现实版黑客帝国!AI能给气味编程了,想要啥味要啥味
同时,气味王国把气味做成胶囊,根据不同的电影更换气味胶囊,而后以工业433M无线传输的方式控制,一次可以播放12种不同的味道。此外,这种气味播放严格控制在毫秒级,因此也不必担心吸入大量的气味颗粒而产生身体不适。 目前,全国已经有气味电影特效厅70多个,气味电影付费观影人数超200万,杭州西溪湿地、烂苹果乐园等均已开设气味王国的气味体验馆。 除了气味播放器,用户还可以使用气味王国自研的Scent Magic气味编辑器自行编辑气味脚本,创作自己的气味作品并分享,活脱脱是一款气味版的“美图秀秀”。 而气味时光机、气味模块等也以相似的功能,适用于不同的场景。未来,气味王国还将把数字嗅觉应用变得更加精致化、个性化,以满足不同领域的需求。 ▲在参观博物馆时闻到与展品对应的气味 三、头部玩家的“数字嗅觉”大潮:“电子鼻”时代来了? 除了以上提到的两家专注于“数字嗅觉”业务的初创公司,谷歌、英特尔等头部玩家在近些年也开始踏足“数字嗅觉”领域。 1、谷歌团队使用神经图形网络识别、预测气味 人类的气味感知是激活400种不同类型嗅觉受体,其中的百万分之一的嗅觉感知神经元(OSN)将信号发送到嗅球,然后再发送到大脑中其他结构的结果。 一个由化学、生命科学和AI研究人员组成的团队,从去年开始就已经着手使用图形神经网络来识别气味分子并预测气味。 这项工作是由谷歌、加拿大高级研究学院、矢量人工智能研究所、多伦多大学和亚利桑那州大学的研究人员创建的,他们制造的模型在一项目的为“绘制化学特性,以预测受试者的行为反应”的“Dream嗅觉预测挑战赛”中表现得最好。 研究人员认为,分子识别的机器学习应用程序的进步,可以帮助人工智能像模仿视听觉一样预测气味。 这个团队的科学家在《arXiv》上发表的题为《机器学习气味:学习小分子的通用感知表示》的论文中写道,将原子视为节点,将化学键视为边缘,则可以将分子解释为图形。 类似于AI模仿视觉和听觉等其他感觉的方式,在这项研究中,气味小分子通过向量值的形式重复传递,最后将汇总代表整个分子的单个矢量作为已知分子的特征传递到网络中,因此无需手动操作就可以通过图形神经网络(GNN)实现直接预测单个分子的气味。 ▲气味小分子的传递过程 除了预测气味描述之外,图形神经网络(GNN)还可以用于其他嗅觉任务,比如用仅有的数据对新提炼出的气味进行分类。 就像从色彩中提炼出“三原色”,具有神经网络的图形是将气味关系定量建模的一种合适的方法,在这方面,气味可以被标记为多个分类标签,研究人员称之为“气味嵌入”。 小气味分子是香精的最基本组成部分,因此也代表了气味预测问题最简单的形式。但是每个分子可以用多种气味来描述,比如香兰素的味道可以被描述成甜味、香草味、奶油味和巧克力味。因为一些事物的某些气味成分比另一些更多,因此气味预测也是一个多标签分类的问题。 嗅觉深度学习的进展将会有助于发现新的合成增香剂,从而减少从天然作物中提取香料而造成的生态影响。 此外,经过气味识别任务训练的模型衍生分子的新形式,还可能有助于加强人类大脑中对一些事物的感知理解。 2、英特尔研发嗅觉芯片,可识别10种气味 不止谷歌团队通过机器学习进军“数字嗅觉”,在今年的3月份,英特尔和康奈尔大学发表的一份联合文件也证明了英特尔在Loihi神经形态芯片(专用芯片)上成功设计了基于大脑嗅觉电路的神经网络机制算法,该算法赋予了芯片在明显的噪声和遮盖情况下,学习和识别10种有害物质的能力。 Loihi是英特尔在2017年9月推出的自学习神经形态芯片,基于14nm的制程工艺,管芯尺寸60毫米,包含超过20亿个晶体管、13万个人工神经元和1.3亿个突触,以及三个用于编排的可管理Lakemont内核。 ▲Loihi,英特尔的神经形态研究芯片 据英特尔称,Loihi的信息处理速度是传统处理器的1000倍,效率高10000倍,并且可以解决某些类型的优化问题,其速度和能源效率提升了三个数量级以上。 此外,Loihi可以保持实时性能,并且在扩展50倍时仅会多消耗30%的功率,而传统硬件在相同状况下则会多消耗50%的功率,与广泛使用的CPU同步定位和映射方法相比,它消耗的电能大约只占传统方式的百分之一。 据悉,这一研究成果还发表在了《自然(Nature)》杂志子刊《自然机器智能(Nature Machine Intelligence)》上,并成为了封面文章。 在Loihi上开发神经算法,就像是在模仿人闻到某种气味后大脑中发生的事。研究人员称,他们采用了一个由72个化学传感器活动组成的数据集,通过配置生物嗅觉的电路图来描述如何“教”Loihi闻味道。他们说他们的技术不会破坏芯片的气味记忆,并且与以往的传统方法相比,它的识别精度更高,这种级别的精度需要每级的训练样本数量多3000倍才能达到。 ▲基于新的神经网络算法下的Loihi芯片电路板 (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |