陆军中的AI与自主机器人,是这样的
每每说起AI与机器人,很多人脑海中首先浮现的往往是那些“后启示录时代”下恐怖、且具有强大超智能的机器,它们横行无忌、甚至占领了整个世界乃至宇宙。电影《终结者》可以说是人们对于AI恐惧之情的典型具象体现,其中的天网(Skynet)——以计算机为基础的人工智能防御系统,被影片称为“基于人工神经网络的集体意识与人工通用型超智能系统”。但目前看来,AI似乎并不像科幻小说中所描述的那样充满戾气。相反,AI正在执行诸多繁琐且传统上只能以手动方式完成的任务,同时为我们带来从识别到对话、再到预测分析模式匹配的各类自主系统。 相较于科幻片里夸张的想象力与创造力,现实中的军事组织在AI领域的投资却尤为真实。以帮助人类更好地完成现有任务的角度,机器学习与AI的实现方式真没那么戏剧性。有趣的是,提升机器智能的过程,反而令人类得以更好地理解并控制周边的环境。 美国陆军研究实验室机动与机动性事务AI与机器学习应用性能管理负责人John Fossaceca最近在一场AI大会上(AI in Government)发表演讲,分享了“AI如何应对各类日常场景?”,同时也介绍了“美国陆军的自主机器人乃至其他机器的未来发展方向”。 问:美国陆军目前如何运用AI技术? John Fossaceca:陆军正在以多种方式使用AI技术,例如将其引入预测性维护当中。AI技术能够帮助我们预测,如何抢在汽车发生故障之前,替换或维修相关的零配件。做到了这一点,我们将节约下大量金钱并提高操作安全性。目前布拉德利战车等多种军用载具都在尝试这项功能。 陆军方面掌握着大量数据,而AI与机器学习技术普遍需要大规模数据支持。以Maven项目为例,此计划使用无人机发回的数据帮助分析人员自动完成某些军事工作。Maven项目中就使用到一系列标准化AI工具,例如谷歌的TensorFlow,当然也配合陆军内部构建的自定义工具。 陆军还在积极研究,使用AI技术增强自动驾驶汽车、电子战与信号情报、传感器融合以及增强现实等等。AI将通过联合全域指挥与控制(JAD-C2)等计划,提高战场上的态势感知能力,最终改善军方的决策制定水平。 AI在军队中的另一项重要作用在于,实现更好的人才管理。目前,陆军AI特遣队(AITF)就在主动使用AI技术,寻求成功作战所必需的能力与属性,并结合这些需求物色潜在的军事人才。 在作战能力发展司令部下辖的陆军研究实验室(ARL)中,AI已经成为一大主要研究领域。ARL可以算是陆军内部的研发中心,管理着多项AI相关计划。以名为“机动与机动性人工智能(AIMM)”的基本研究计划为例,其目标在于引导陆军思考如何为下一代战斗车辆(NGCV)在无需人为介入的前提下获得良好的越野能力。这些下一代智能车辆,能够根据特殊情况、环境条件做出推理,进而做出最佳行动决策,同时向士兵发出情况通报,以提高对战场的态势感知水平。ARL还拥有其他多项重要研究计划,并着力运用AI方法在其中推动创新,相信这一切都将给未来的陆军带来更强的作战能力。 将来,美国陆军将使用AI技术处理来自多个传感器的输入数据,借此准确描绘战场威胁,同时加快由陆军未来司令部领导的Convergence(融合)项目中的目标制定与目标决策过程。 问:采用人工智能/机器学习技术,陆军面临哪些挑战? John Fossaceca:「商业AI」依赖于庞大的计算资源与海量数据,其中云计算资源能够及时向终端返回处理结果。但另一方面,「战地AI」则受限于边缘设备——计算机处理器相对轻量化,且在战场对抗环境下通信带宽可能较有限。 在陆军的实际应用中,我们通常得不到充足的训练数据,现有的数据往往已经损坏或者噪声过多。运营环境也趋于动态变化,有时会因道路、建筑物以及基础设施受损而变得混乱不堪。另外,我们需要面对来自多个来源的异类数据,某些数据甚至具有欺骗性或者已经受到对手的操纵。 目前的AI技术往往非常脆弱,甚至在理想的运营条件下也有可能发生崩溃。其推理能力也非常有限,特别是在实时推理方面表现不佳。部分已经部署的系统虽然不断强调其AI能力,但实际功能往往受限于硬编码规则,而缺乏从传感器及其他系统收集输入内容,并做出推断与推理的能力——更遑论提供增强型态势评估了。 相当一部分AI方法都依赖于“监督学习”(例如深度学习),这类技术会构建起庞大的模型,通常需要在超大规模计算基础设施之上,以“批处理”形式学习成上千万甚至上亿个参数。很明显,陆军需要的是能够摆脱这类束缚、真正拥有在线实时推理能力的解决方案。 最终我们发现,现有系统并不能真正自动运行,其仍需要人为介入、干预乃至手动控制。早在2018年,我们就开始尝试通过反馈进行学习,由人类观察者向智能代理提供正面或负面信号。通过这种方式,我们证明可以大幅缩短学习时间。我们将这项研究扩展并总结为“示范学习”,稍后我们会进一步讨论这个议题。 随着研究的深入,我们意识到需要一种与「智能代理」的自然交互方式。除了自然的对话与接触之外,由于AI缺少对世界的认知常识与“朴素推理”能力,很多问题随之浮出水面。我们则通过AIMM中的第二项工作——上下文感知决策制定——努力攻克这些挑战。 问:陆军如何为人工智能/机器学习项目提供数据支持? John Fossaceca:陆军乃至整个国防部,都在开展大规模数据收集与标记工作,借此为AI算法准备可用的数据资源。例如,Maven项目中就使用到大量来自无人机的视频素材。有时候,我们也会根据保密级别,通过众包技术进行数据标记。其他举措还包括ARL的内部工作,例如从各个位置收集内部数据,并与研究合作伙伴一道整理并标记各类地形数据。ARL在马里兰州设有机器人研究合作园区(R2C2),在园区内收集数据并进行各类自主实验。 除了Maven项目之外,国防部还在运用先进工具进行情报分析。其中大部分项目致力于使用深度学习方法检测图像中的特定对象,而实现的前提,自然是对大量数据进行清洗、整理与标记。此外,项目还要求研究人员使用存储、算法工具包、计算资源、测试以及部署工具共同构建起AI管道。为此,项目团队往往需要开发出数据格式标准,以保证实验与测试场景之间保持一致,并为用户提供熟悉的环境。数据存储库本身也需要进行分类以供用户访问,同时保证其中的数据随附可用描述。为了在多个数据库之间实现信息访问标准化,军方做出一系列努力,旨在降低情报界使用AI成果的门槛。 问:陆军如何利用自动驾驶汽车实现机动性目标? (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |