15 位产业领袖,共话安防新十年丨中国人工智能安防峰会
安防新十年以不易开始,但他们给行业开了个好头。 2020年的安防圈,仿佛被按下了暂停键,项目停滞、融资缓慢、研发缩减,没有人能预料到,中国安防的新十年,是以这样的状态开始,不少企业也以这样的方式结束。 过去十年里,近千家安防产业链厂商,经过无数次物竞与天择,仅留下数十家企业,拥有充沛的资金和技术储备,迎接新十年。 站在安防新十年的这个节点之上,9月5日,由雷锋网 & AI 掘金志主办的第三届中国人工智能安防峰会,在杭州正式召开。 本届峰会以「洗牌结束,格局重塑」为主题,会上代表未来新十年的15家企业,为现场1000余位听众和线上几十万观众,分享迎接安防新十年的经营理念与技术应用方法论。 以下是本次大会演讲内容的精彩回顾: 国际人工智能联合会 首位华人理事会主席杨强: 「联邦学习下的数据价值与模型安全」 杨强在大会中指出,目前很多行业并没有真正意义上的大数据,产学两界都缺乏高质量、有标注、不断更新的数据。 如何保证各方数据私密不外传,又能保证数据更新?这就是分布性数据隐私保护、联合建模的挑战和需求——把小数据聚合起来成为大数据。 加上现在人们愈发重视隐私,政府纷纷立法,对技术的监管趋严,联邦学习正为保护隐私带来了技术上的新思路。 如何理解联邦学习?“邦”是指每个实体参与者地位相同,无论大小,提供的价值才是他们存在的意义;“联”是用一种方式把它们联合起来,保护隐私,一起做有意义的事情。 联邦学习的宗旨是“数据不动模型动”,目标是“数据可用不可见”。数据可以用,但是这些原始数据是合作方彼此之间见不到的,所以一些散乱的小数据就可以成为虚拟的大数据。 杨强教授介绍称,目前联邦学习主要有横向联邦(样本不同、特征重叠)和纵向联邦(样本重叠、特征不同)两种做法,前者更适用于to C场景,后者适合to B场景。 他强调,联邦学习和分布式AI、联邦数据库的区别在于:过去这二者的数据形态、分布、表征皆为同类,但在联邦学习里它们可以是异构的;且过去联邦数据库目的是并行计算、增加效率,但现在数据本身属于不同的属主,所以需要做加密情况下保护隐私的计算。 随后,杨强也谈到了联邦学习在安防等领域的应用。此外,杨强团队还推动制定世界上第一个联邦学习国际标准,同时也发布了开源平台FATE,并且积极筹措联邦学习联盟,共建联邦学习生态。 海康威视EBG解决方案部总裁李亚亚: 「赋能数字转型,服务千行百业」 李亚亚介绍,海康目前的业务主要分为三块:综合安防、大数据服务和智慧业务。 数字经济和数字化转型成为必然趋势下,人工智能交付问题依然面临挑战,难点有三:一是泛在需求,这是场景碎片化、需求差异化必然带来落地难问题;二是复杂交付,涉及产品、施工、算法优化、信息系统打通、业务流程转型等诸多问题。三是成本可控,关注投入产出比非常必要。 李亚亚认为,解决落地难,仍然是要回归商业本质。要从产品的品质抓起,目的是让各行业都享受到技术革新的红利,通过场景化、差异化的问题解决,提升用户的业务价值回报。 数字化转型是一个逐步进阶的过程,场景化是路径,因此要通过系统的产品体系去支撑场景化应用。面向企业领域的数字化业务的开展和落地,海康威视从拉近管理距离,提升业务效率,规范作业行为,防范安全隐患四个维度出发为行业赋能。 海康威视秉持开放融合的合作理念,携手合作伙伴,共同实践数字化转型之路;秉善笃行,不断创新技术和产品赋能千行百业,为社会的安全和发展开拓新视界。 大华股份先进技术研究院院长殷俊: 「AI 行业应用,产业升级」 殷俊认为,AI经历了理论研究的1.0、智能落地的2.0,目前处于行业智能的3.0阶段。 AI 1.0时期是“两耳不闻窗外事,一心只读圣贤书”,计算力不够,数据有限,算法不成熟;2.0阶段是“纸上得来终觉浅,绝知此事要躬行”,算法、算力有了突破,成熟的算法寻找落地场景;3.0阶段是“忽如一夜春风来,千树万树梨花开”,行业最需要的不仅是一套算法、一套系统,而是企业解决客户痛点和需求的能力。 在行业智能背景下,人工智能需要具备的基础能力包括:一是AI技术泛化、快速迁移新应用的能力;二是应用牵引,快速适配新需求的能力。 殷俊认为在3.0阶段是应用主导个性化和AI解决方案的敏捷交付。在这个过程中,首先要构建人工智能解决方案的端到端体系化能力,大华已经在四个方向做了重点布局:系统架构、数据智能、智能工程化、智能技术。 除了构建以上核心能力,大华还开放全栈能力,赋能行业生态,并在实战中持续积累人工智能核心技术,针对全场景理解、小规模数据、泛化能力、多任务学习和AutoML等人工智能的五大技术挑战,开展实践探索,并已取得实战应用成果。 最后,殷俊强调,AI目前还是依赖人工为主,大华希望未来在行业共同努力下,能够真正转向AI的自我智能,推动行业智慧化落地。 西部数据智慧视频产品首席技术官孙煜: (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |