加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

百度大脑国际顶会再绽锋芒,10篇论文强势入选

发布时间:2020-07-24 11:57:20 所属栏目:动态 来源:站长网
导读:KDD2020 近日,数据挖掘顶级会议KDD 2020发布论文接收结果,其中Research Track共1279篇论文参与投稿,仅216篇论文入选,接收率约为16.9%; Applied Data Science track共756篇论文投稿,仅121篇论文入选,接收率约为16.0%。百度AI凭借领先的行业技术实力,

论文介绍了百度视频广告是如何根据用户搜索来匹配对应的视频广告的。根据用户的文本搜索来匹配视频广告本质上是一个跨模态搜索问题。因为模态间的鸿沟,跨模态搜索比经典的以文搜文和以图搜图都更有挑战性。为此,百度研究团队提出了混合注意力网络(CAN),并在百度动态视频广告平台上线。混合注意力网络不仅融合了模态内的注意力并且嵌入了跨模态的注意力。为了验证CAN的有效性,建立了一个包含70万好看视频的Daily700K 数据集。在Daily700K数据集和VATEX公开数据集上,CAN都取得了领先的搜索效果。在百度的动态视频广告平台上线后,CAN取得了5.47%的CVR提升。

论文5:Intelligent Exploration for User Interface Modules of Mobile App with Collective Learning

关键词:智能界面设计,人机交互,协同学习

百度大脑国际顶会再绽锋芒,10篇论文强势入选

手机移动App的整体界面通常是由若干个界面模块组成的。如何合理的设计每个界面模块是提高移动App用户体验的一个关键步骤。在实际的界面设计过程中,界面模块关键参数的决定往往依赖于设计师的主观判断,而关键参数变动带来的实际影响只有通过线上小流量测试的方式来确定,需要花费很大的时间和人力成本。通常只有很少量的设计方案有机会进行线上实验测试。考虑到每个界面模块都有众多参数排列组合形成的接近无穷多个设计方案,在实际应用几乎不可能通过这种事后验证的方式来找到每个界面模块的最优设计方案。

论文中,百度提出了一个名为FEELER的模型框架。该框架通过协同学习的方式来快速和智能化的探索用户界面模块的最优设计方案。同时FEELER还能够帮助设计师量化的分析不同界面模块设计方案的优劣,从而帮助设计师快速便捷的调整和优化手机App的主要界面模块。作为中国最大的手机移动App之一的百度App,为FEELER提供了测试数据和应用场景来验证FEELER的有用性。

论文6:Polestar: An Intelligent, Efficient and National-Wide Public Transportation Routing Engine

关键词:公交,路线规划,情境感知排序,推荐

百度大脑国际顶会再绽锋芒,10篇论文强势入选

公共交通在居民日常生活中扮演了重要的角色。相较于其他形式的交通,公共交通更加环境友好、高效且具有性价比。但是,面对不断扩展的交通网和日益复杂的出行场景,用户通常很难轻易地确定最合适的出行方案。

为此,论文提出Polestar,一个智能且高效的数据驱动公交路线引擎。特别地,百度首先提出了一个新的公交图来建模公交系统中多种出行开销,如时间或距离。此外,引入高效的站点绑定策略和通用的路线搜索算法来生成候选路线。之后,百度团队还提出一个两轮的排序模块捕捉用户在不同情境下的出行偏好。最后,在两个真实数据集上的实验结果证明了Polestar的有效性。在2019年初,Polestar就已经被部署在了百度地图上。现在,Polestar服务着全国超过330个城市,每天相应数千万路线规划请求,并获得了显著的点击率提升。

论文7:Geodemographic Influence Maximization

关键词:空间用户影响力最大化,子模最优化,神经网络近似算法,户外广告营销算法

百度大脑国际顶会再绽锋芒,10篇论文强势入选

给定城市中一系列的地点,广告主应该在哪些地点投放户外广告,使得在不超过预算的情况下触达尽可能多的人?为了解决这个问题,过去的研究主要基于“用户是否被某广告影响取决于一个预定义的用户轨迹集合”。然而,在大多数的现实应用场景中,预定义的用户轨迹集合是很难被获取的;但是通过统计人群行为数据而计算出来的不同地点之间的人群转移概率图,则通常比较容易获取。本文解决了一个基于下述设定的一个一般性问题:给定人群在地点间的分布和人群在地点与地点间的转移概率图,在预算内选择若干个地点组成的集合,使得人群到达这些地点的期望次数最大化。百度研究团队将这个问题叫做空间用户影响力最大化问题(Geodemographic Influence Maximization,简称GIM)。

论文首先证明GIM是NP-hard的问题,但其目标函数是单调并且子模的,因此存在一个贪心策略的算法可以使效果达到理论最优解的1/2(1-1/e) 比例。然而,这个贪心算法的时间复杂度仍然太高,限制了它在大规模数据上的可用性。论文利用GIM问题的转移图上的空间临近性等特点,提出了一个比贪心算法更加快速有效的确定性算法(称作Lazy-Sower)。同时,本文进一步提出了一个基于机器学习的随机算法(NN-Sower)。 NN-Sower在轻微减少效果的条件下可以大幅提高计算速度。在两个城市的真实数据集上的实验证明了新算法比基准算法具有更好的效果和速度。

论文8:Competitive Analysis for Points of Interest

关键词:兴趣点竞争分析,空间自适应图神经网络,POI知识图谱,异质信息网络

百度大脑国际顶会再绽锋芒,10篇论文强势入选

兴趣点(Point of interest, POI)竞争关系可以衡量城市中两个POI(如餐馆、酒店、游乐场等)为了争取足够多的资源(主要是用户)而产生的竞争的强弱。已有的竞争关系分析的研究主要聚焦于从文本数据中挖掘企业或者商品等实体之间的竞争行为,而很少关注POI之间的竞争关系分析。大量关于POI的用户行为数据(如评论数据和地图搜索数据)的出现为POI的竞争关系分析提供了可能。

论文中,百度首先使用POI评论和地图搜索数据构建了一个异构的POI信息网络(HPIN)。同时,百度提出一种基于图神经网络的深度学习框架DeepR。该框架由空间自适应图神经网络(SA-GNN)和POI知识抽取模型(PKE)两个部分组成。SA-GNN具有面向空间的聚合操作和基于空间依赖的注意力机制等特殊结构,可以有效结合POI的空间信息和位置分布对POI的表征进行学习。同时,PKE利用关系图卷积计算和交叉注意力网络提取HPIN中的有关POI的知识特征。在两个真实数据集上的实验结果证明了DeepR的有效性。

论文9:Local Community Detection in Multiple Networks

关键词:局部社区发现算法,多层图结构,随机游走

百度大脑国际顶会再绽锋芒,10篇论文强势入选

(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!