周伯文对话斯坦福教授曼宁:人机对话智能新进展需要新「图灵测试」
以下文章来源于机器之心 ,作者Synced (导语)6 月 22 日,在 2020 智源大会上,有一场大佬对大佬的精彩会谈。 过去一年里,人工智能进展最大的方向在自然语言处理(NLP),BERT、GPT-2 等预训练模型引领了很多方向的新时代,又催生出了大量商业应用机会。面对技术的进步,AI 领域的顶级学者和从业高管是如何看待未来前景的?近日,2020 智源大会在线上召开,在为期四天的会议中,6 位图灵奖得主、上百位业内专家在 19 个专题论坛云上共同畅想了人工智能的下一个十年。 在智源大会上,京东集团技术委员会主席、京东智联云总裁、京东人工智能研究院院长、IEEE Fellow周伯文与斯坦福大学教授、人工智能实验室负责人克里斯托弗 · 曼宁(Christopher Mannin)展开了一次精彩的交流。他们讨论了自然语言处理领域近期的进展,预训练模型兴起之后的未来发展方向,甚至还为人工智能的标杆评测基准——图灵测试找到了一个「替代方案」。 在交流过程中,两人也提及了京东最近被人工智能顶会 ACL-2020 接收的研究,以及曼宁刚刚发表的工作,有关预训练模型学习到的语言结构。 在过去这一年中,我们见证了许多 NLP 领域的技术成果和场景落地。对此,人工智能著名学者克里斯托弗 · 曼宁和京东集团技术「掌门人」周伯文是如何看待的?让我们一探究竟。 语言理解 & 人机对话领域过去一年的进展 周伯文与Chris在对话伊始回顾了在2019年智源大会上尖峰对话中达成的共识:任务导向的多轮对话是NLP下一个十年重点的研究和应用方向。周伯文还创造了一个新词「任务导向型对话智能」(Task-oriented Conversational Intelligence),一方面,任务导向型对话智能可以反向推动许多基础技术能力的进步,另一方面,它的发展也将对经济方面产生巨大影响,带来人机交互技术驱动的万亿级市场。 在语言理解&人机对话领域过去一年的进展层面上,周伯文和曼宁不约而同提到了「最令人印象深刻的就是人们见证了超大规模预训练语言模型的出现,它们可以生成有组织的语言文字表达,」 曼宁表示:「其中的代表就是 GPT-2 和 GPT-3,也包含 BERT、RoBERTA 和 ALBERT、ERNIE 等等不少 BERT 变种。它们使得自然语言理解与生成有了非常大的发展。我们也看到传统 AI 领域有了很大转变,很多任务目前都倾向于被大型模型来解决。」 人工智能发展的 40 多年来,我们一直在努力试图让 AI 可以回答科学问题。我们过去尝试使用的思路是研究知识的表达方法,阿兰图灵实验室的 Aristo Project 试图让 AI 理解科学道理,进而深度理解世界,这一思路在最初的十年推动了知识的表达与推理。 在 2020 年,我们通过超大尺寸模型实现了巨大的进步。基于RoBERTa 预训练模型,我们可以实现 95% 的科学问题回答准确率,这看起来是目前解决知识问题的最好方法了。 这些进步为新一轮商业应用打开了道路。「未来的方向虽然还无法确定,但我们可以看到基于预训练语言模型,为搜索引擎公司等科技企业带来了很多新商业机会,」曼宁表示。「他们可以实现近十年来最大的单个技术进步,构建更好的机器翻译系统,对话 AI,人工智能客服系统等等。现在,我们正在经历 NLP 领域激动人心的时刻。」 NLP 领域最近发生了从特定任务模型向多任务,大规模预训练模型方向转变的重要变化。一方面,工业界乐于看到 BERT 这样模型在下游应用上的前景。但对于学界研究者来说,这种发展大大提高了新研究的门槛。看看 GPT-2 到 GPT-3,它的参数从 15 亿增加到了 1750 亿。但如果仔细观察的话,你会发现模型对知识的获取和推理性能的提高,可没有参数增加的数量那么多。 针对这一问题,周伯文指出「在查看GPT-2、GPT-3相关论文后,有一件事情引起了我的注意,那就是-当我们从零样本学习(zero-shot)到单样本(one-shot)学习时,我认为GPT-3改进了很多。这有效证明了,从小型模型转换为大型模型时,预训练等于更多的信息。」 与此同时,周伯文发现,从单样本(one-shot)学习过渡到少样本(few-shot)学习时,GPT-3或GPT-2的改进非常非常有限。周伯文指出:「我认为这从另一方面证明,这些更大规模的模型可能并没有学习到足够多的信息。」 由此观之,知识的获取和表征可能仍是 NLP 的正确方向。 曼宁认为,目前的大规模预训练模型可能存在一些「根本性」的错误——这些模型非常低效率。从现实世界人们的对话中学习知识的表征,总不是一个好方法。可能 5 年后人们往回看就会嘲笑现在的工作:「看看这些人吧,只想着把模型做得越来越大就妄想能够实现人工智能了。」 对于研究者来说,我们必须寻找更加有趣的,让模型可以思考、能够更高效提取知识的方法。某种程度上,人们应该需要找到更好的知识编码机制,这有关知识空间,语义连接的更好表达方式。这可能和传统 NLP 的知识图谱和知识表征有关。所以让模型记忆和推断真实世界的情况,看起来从基础上就不是一个正确的,高效的方法。 「人类不是通过这种方法学习知识的。人类存储的知识很少,但可以理解大量知识。」曼宁说道。 (图注)GPT-3 通过高达 1750 亿参数实现了其他模型无法匹敌的文本生成效果。 作为一个在该领域中务实的研究人员,周伯文非常关注最近预训练的大规模语言模型以及对语言任务进行微调的功能。在一个月前放榜的自然语言处理顶会 ACL 2020 上,周伯文等人有两篇论文被接收。 「在论文《Orthogonal Relation Transforms with Graph Context Modeling for Knowledge Graph Embedding》中,我们得出的结论是通过预训练模型,我们可以生成非常自然的商品介绍,内容来自预训练模型,还有图片、知识图谱和用户的评价,」周伯文表示。 另一个例子是在论文《Self-Attention Guided Copy Mechanism for Abstractive Summarization》中,自注意力机制(self-attention)可以帮助我们在对话任务和文本摘要任务上,生成了更多更自然的语句。 (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |