Google 发布神经天气模型,几秒钟预测整个美国的降水量
与 MetNet 模型相比,HRRR 物理模型的预测更清晰、更结构化。但其结构,特别是预测结构的准确时间和位置的精度较低。这是由于初始情况和模型参数的不确定性造成的。 HRRR(左)从许多可能的结果中预测单个潜在的未来结果(红色),而 MetNet(右)通过分配未来结果的概率直接解释不确定性。 研究人员对 HRRR 和 MetNet 模型之间进行了比较,感兴趣的可以打开视频观看:https://youtu.be/-dAvqroX7ZI 未来方向 Google 正在积极研究如何改进全球天气预报模型,尤其是在气候快速变化很大的地区的准确性。虽然上文展示了美国大陆目前的 MetNet 模型,但它可以扩展到任何有足够雷达和光学卫星数据的地区。本文提出的工作是这一努力的一个小小的垫脚石,Google 希望通过今后与气象界的合作,能够带来更大的改进。 via:https://ai.googleblog.com/2020/03/a-neural-weather-model-for-eight-hour.html (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |