加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 建站资源 > 优化 > 正文

照亮未来:离子阱量子计算机

发布时间:2020-11-29 19:26:41 所属栏目:优化 来源:《Light:Science&Applications》新媒
导读:近年来,量子计算发展突飞猛进,已经成为新一轮科技革命和产业变革的前沿领域。无论是学术界、产业界还是政府,全世界诸多国家都已经认识到量子计算对新一轮科技革命和产业发展的重要意义,并投入了众多资源来推动这一领域的发展。目前国际上实现量子计算

近年来,量子计算发展突飞猛进,已经成为新一轮科技革命和产业变革的前沿领域。无论是学术界、产业界还是政府,全世界诸多国家都已经认识到量子计算对新一轮科技革命和产业发展的重要意义,并投入了众多资源来推动这一领域的发展。目前国际上实现量子计算的主流路径有多个,包括超导量子计算、半导体量子计算、离子阱量子计算、原子量子计算、核自旋量子计算和拓扑量子计算等等。

在这众多实现路径当中,离子阱量子计算以其长相干时间和高计算精度成为实现高可靠性量子信息处理器和高精度光学离子钟的有力候选方案。

但是这一方法目前发展面临的最大瓶颈是其集成上存在很大难度,系统难以扩展。

正如图1所示,在离子阱量子实验室的实验台上往往摆满了各种反射镜和透镜,用来将激光聚焦从而使离子陷俘到某个位置上。尽管通过利用激光来控制离子阱,科学家们已经学会了如何使用离子阱来制作量子计算机的基本数据单元--量子比特(量子位)。

1

图1. 传统几何光学离子阱实验平台

图源:中国科学院长春光机所,Light学术出版中心,新媒体工作组

然而这种基于传统几何光路的激光装置现在却正在拖累这个领域的发展,因为这种基于传统几何光路的方法在实验上很难同时实现多个离子的陷俘和控制,同时这些实验装置体积较大、易受扰动,很难集成从而走出实验室,走向实用化、工程化。

近期,来自美国麻省理工学院林肯实验室Lincoln Laboratory的研究人员首次通过使用集成波导、光栅耦合器和表面电极实现了离子阱量子光路的集成。

这一重要突破以Integrated multi-wavelength control of an ion qubit为题发表在Nature。

在该论文中,研究人员展示了一种光纤光学模块,这种模块可以集成到离子阱芯片上,从而将光耦合到刻蚀在芯片上的光波导中。通过这些光波导,不同波长的光可以在芯片上导波最终被引导到芯片上离子阱的位置,从而实现量子计算。最重要的是,这种方法实现了离子阱量子芯片的集成化和可扩展化,为离子阱量子计算走出实验室、走向进一步的大规模产业应用铺平了道路。

2

图2. 光纤光学可以将光直接耦合到离子阱芯片上。整个芯片被放置在一个低温真空腔中,芯片上的波导结构将光引导到芯片上方陷俘离子的位置进行量子计算

图源:麻省理工学院,林肯实验室

多频率激光集成

基于离子阱进行计算需要对每个离子进行精密并且各自独立的控制。当在短距离的一维链上控制几个离子的时候,自由空间几何光路可以做的很好;但是如果要在一个很大的二维的阵列中只改变一个离子的状态而不影响其他离子,传统的几何光路实现起来非常困难。考虑到实际的量子计算机往往需要数以千计的量子位,这种传统几何光路控制的方法难以实现。

这个瓶颈促使研究人员去寻找其他可能的方法。在2016年,林肯实验室和MIT的研究人员展示了一种新型集成光学芯片。他们将一束红色激光聚焦到光学集成芯片上,芯片上的波导将光引导到一个光栅耦合器中,光栅耦合器可以起到光学减震带的作用,将光停止下来同时把光引导到离子的位置处。红光是执行量子计算基本操作量子门的关键,该研究团队在演示中展示了基于红光的量子门操作。

但是要执行全部量子计算,需要六种不同颜色的激光:制备离子、将其冷却、读取它的每个能量状态、和执行量子门。有了这样一个最新的芯片,该团队已经将他们的概念验证推广到了余下几种从紫外到红外的波长。

3

图3. 这个动画演示了芯片中的光栅耦合器通过发出四种波长的激光来实现对离子阱的操控和测量。动画中的黄色表面是芯片顶部的金属电极层。

图源:麻省理工学院,林肯实验室

论文的另外一位作者John Chiaverini 表示,“基于这些波长,我们可以执行离子阱所有基本操作” 。他们未能展示的一项操作——双量子比特门——被来自ETH的一个团队验证。ETH的团队使用的是类似于他们2016年工作的芯片,也在这一期Nature上被报道。Chiaverini补充道,“他们(ETH)的工作和我们的结合在一起向人们证明了这种方法可以用来制备大规模的离子阱阵列。”

光纤光学

为了能够从一个波长提升到多个波长,该团队设计了一种方法可以将光纤光学模块直接制备在芯片上。这个模块有四个光学光纤组成,每个光纤对应于一个特定的波长范围。这些光纤与芯片上刻蚀的不同波导结构分别耦合在一起。

论文的第一作者,同时也是文章中实验部分的主要完成者Robert Niffenegger表示,“将光纤模块耦合到芯片上的波导结构,同时涂覆环氧树脂感觉就像我们是在进行外科手术。这是一个非常精密的工作,我们这个离子阱量子芯片加工的可接受误差范围只有0.5微米,并且要保证这个芯片在4K(-269℃)的低温下能够正常工作。”

4

图4. 利用单模波导和光栅耦合器来引导光束聚焦。

图源:Nature 586, 538–542(2020) Extended Data Fig. 1

研究人员在波导的表面覆盖了一层玻璃,玻璃的上面是金属电极,这些金属电极可以将离子保持在正确的位置上。金属电极上布满了孔,从而可以在光栅耦合器正确的位置上将光辐射出去。

因为波长越小,损耗往往越大,所以要让光以低损耗传递给离子,同时避免介质的吸收或散射是一个很大的挑战。

参与实验的Sage说,“这是一个开发材料、绘制波导图形、测试样品、测量性能,然后再尝试的过程。我们还必须确保波导材料的工作不仅与所需的光波长一致,同时不会干扰捕捉离子的金属电极。”

可扩展性和便携性

对于这种芯片的应用前景,论文作者之一Niffenegger表示,“未来我们可以将这些芯片组合成为阵列来集成更多的离子阱,使得每个离子阱都可以被精确控制,从而为更强大的量子计算机打开大门。”

(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!