这个模型脑补能力比GAN更强,ETH超分辨率模型SRFlow
通用超分辨率 研究者在 DIV2K 验证集上评估了 SRFlow 在通用超分辨率任务中的性能,并与 Bicubic、EDSR 、RRDB、ESRGAN 和 RankSRGAN 进行了对比。 与基于 GAN 的方法 [47,56] 相比,SRFlow 实现了明显更好的 PSNR、LPIPS 和 LR-PSNR 结果,并在 PIQUE 和 BRISQUE 方面也得到了出色的结果。 图 8 中的可视化结果表明,EDSR 和 RRDB 的感知效果较差,这些结果几乎不会产生高频细节。相比之下,与 ESRGAN 相比,SRFlow 能够生成丰富的细节,实现了良好的感知效果。 如第一行所示,ESRGAN 生成的图像在多个位置存在严重的褪色伪影(discolored artifact)和振铃效应(ringing pattern)。而 SRFlow 能够生成更加稳定和一致的结果。 控制变量研究 此外,为了研究深度和宽度这两个因素的影响,研究者进行了控制变量实验。图 9 显示了在 CelebA 数据集上的结果: 如何根据任务需求搭配恰当类型的数据库? 在AWS推出的白皮书《进入专用数据库时代》中,介绍了8种数据库类型:关系、键值、文档、内存中、关系图、时间序列、分类账、领域宽列,并逐一分析了每种类型的优势、挑战与主要使用案例。
(编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |