加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 模式 > 正文

Rosetta如何连接隐私计算与AI?

发布时间:2020-08-12 14:09:19 所属栏目:模式 来源:量子位
导读:本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。 今天很高兴能够与大家分享矩阵元最近的一些研究成果。主要的方向是隐私计算,以及基于密码学的隐私开源框架Rosetta。 隐私计算时代来临? 目前数据面临着一些挑战。随着数字化的发展,

整体而言,Rosetta的框架图如上图所示,它包括Python的前端APl,这块是Rosetta方便用户使用而特色支持的,然后与TensorFlow的前后端做了适配,同时我们开发了一个统一的密码协议管理层,可以去适配不同的密码协议。

我们的目标是既能够让懂密码学的开发者把现在的东西复用到整个框架里来,也能够让不懂密码学的AI开发者能够无门槛的或者非常低门槛的去使用隐私计算技术,相当于把密码学与机器学习,有机的结合起来。这就是Rosetta的目标。

下面说一下Rosetta的架构,首先要讲TensorFlow架构,TensorFlow架构简单地说就是一个图转化和一个图执行。我们充分利用了TensorFlow架构来进行密码适配。

当TensorFlow把那个图变成下图左边标准的传统图时,我们去做了一个static pass,把每一个操作全部都转成SecureOp,这个统称是为了后面能够支持密码算法。

矩阵元算法科学家谢翔:Rosetta如何连接隐私计算与AI?

然后第二步就是图执行,图执行我们运用了dynamic pass,左边的图就是刚才转化之后的图,然后当数据的时候,根据每一个这样的图,dynamic pass可以动态去适配用某一类密码协议去执行这个图。

我们能够充分运用TensorFlow框架,同时因为能够利用整个底层的密码算法,dynamic pass也可充分利用TensorFlow这种optimizer之间的并行,可以让它跑得更快。

矩阵元算法科学家谢翔:Rosetta如何连接隐私计算与AI?

下面讲一个Rosetta在实际场景落地中的应用案例:金融场景下的应用。银行A与B,他们各有各的数据,然后互联网公司C也有数据,大家希望能够通过Rosetta把模型建起来,比如说训练逻辑回归后,把风控模型训练出来,训练出一个更加高效的模型。同时保证abc各方数据都不会被对方拿到,这种场景下,用Rosetta解决问题非常简单。

矩阵元算法科学家谢翔:Rosetta如何连接隐私计算与AI?

如上图,把Rosetta import进来,然后选一个协议,然后选相应的输入。后面就是标准的用TensorFlow去回归,所以后面完全不需要有任何密码学背景,也可以完全写出来。在多数据融合的训练场景里,只要Rosetta一个包,然后把数据做一些处理。后面整个逻辑回归的代码书写,跟原来的是一模一样的,甚至可以把代码直接拷贝过来。这里有一个问题,我们用MPC的方式也就是密文的方式,它的精度与明文的方式有何区别?

矩阵元算法科学家谢翔:Rosetta如何连接隐私计算与AI?

如上图,我们做了一个对比,大家可以看到几乎没有区别,基本等价了,所以在设计足够多的参数足够多的精度之后,完全可以保证整个模型的精度。当然还有一个场景就是所谓的模型预测服务。

矩阵元算法科学家谢翔:Rosetta如何连接隐私计算与AI?

最后讲一点,Rosetta刚刚开始,目前已经开源了0.2.1版本。下面是GitHub链接:

https://github.com/LatticeX-Foundation/Rosetta

 

(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读