加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_阳江站长网 (https://www.0662zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 模式 > 正文

大数据基于AI的安全系统中的道德偏见

发布时间:2020-03-13 14:25:41 所属栏目:模式 来源:51CTO
导读:这个问题已经在世界各地的会议和社交聊天的讨论表中浮出水面了-机器可以打开人类吗?这个问题经常伴随着《终结者》等电影的场景和视觉效果,但是我们所知道的和所看到的在大数据中使用AI的原因在于,在设计具有更复杂环境的更大规模的系统时,必须考虑某些

AI也已成为验证模型的准确性和混淆矩阵的前沿,而不是依靠诸如ROC曲线和AUC曲线之类的简单工具。这些模型着眼于在部署数据集之前执行重复的质量检查,并尝试覆盖数据的整体类,而不管分布或形状如何。对于数据集来说,这种预测试的性质变得更加困难,因为数据集的单位和范围的差异在输入中有很大差异。同样,对于与媒体相关的数据,分解内容并将其压缩为数字格式所花费的时间仍然会导致偏差。

但是,由于数据透明性和第三方检查的基础知识有了新的变化,公司至少意识到了出问题了。在模型之间也插入了新的解释器循环,以强调填充大多数AI模型的黑匣子。这些再次由AI模型驱动,这些AI模型经过系统微调以查找不一致和错误。

AI道德失范的几个案例

数据分析人员会熟悉假阴性和假阳性的概念。这些在确定输出方面的差异会导致特殊情况的错误,从而对人员造成不利影响。错误的否定看跌期权是系统错误地将肯定的类别识别为否定的情况。类似地,当否定类别被错误地识别为肯定时,就会出现假肯定。

在实际的大数据研究中,可以更好地理解此类虚假案件的严重性。在使用logistic回归模型对冠心病(冠心病)进行建模的著名案例中,尽管误报率和误报率的准确性很高,但混淆矩阵却产生了大量。对于普通人来说,准确的模型似乎是唯一重要的“成败”检查。但是,即使在数据分析的初期,也很明显,这样的模型会变得平淡无奇,甚至会误诊新患者。

通过收集更多的数据流并清洗列以进行更好的数据标准化来进行权衡。如今,这一步骤已成为该行业的主食。

Uber的自动驾驶汽车在测试阶段遭受撞车并不是业内专业人员关注的唯一危险信号。这些恐惧也扩展到其他领域,例如识别和机器感知。科技巨头亚马逊的模式已经学会发展媒体所谓的对女性的“性别偏见”,因此受到媒体的审查。

在令人震惊的求职者偏见的情况下(先前曾与科技公司的求职者见过),这些模型对女性的应聘工作产生的负面依从性高于男性。另一方面,在诸如Apple之类的科技巨头中也发现了问题,消费者大肆宣传FaceID,允许不同的用户访问锁定的手机。可能有人争辩说,即使对于不同的人,用于识别面部表情以进行检测的模型也可能会产生相似的结果。

工程师坚持消除错误并得出结论认为,可疑输入会产生假设偏差只是时间问题。由于未能整合道德价值观,人工智能在医学界的重大飞跃已经缩回了一个台阶。可以取代旅途中的护士和员工的价值观。这主要是通过解释所有可能数量的案例示例来解决的,在这些案例中,机器可以正确地替代人员并做出完全相同的决定。虽然,哲学专业的学生可能会争辩说,即使人类也没有遵循一套指导方针。有各种道德学派-康德,平等主义者,功利主义者等。这些思想流派如何适应各种伦理难题,取决于个人及其利益。

在著名的拉杆箱中,一个人拉动或不拉动杠杆的倾向纯粹是由该人所处的道德框架决定的。当机器代替决策者时,问责制的问题变得模糊。

最后的话-如何使AI更符合道德

我们对这些系统的容忍度在哪里永恒的问题导致将机器纳入我们的日常活动中。人工智能一直是诸如运输,预测研究,金融投资,安全,通信和生产等救生和支持框架的基础。它已渗透到人类生活的所有重要方面,而没有引起很多反对者的注意。

当AI无法嵌入创建它的人类所遵循的哲学时,就划出了界线。我们与叶夫根尼·扎米亚丁(Yevgeny Zamyatin)和艾伦·图灵(Alan Turing)时代一样遥遥领先,当时机器被认为是公正的。通过教导人工智能具有道德性,在机器中焕发出新的生命是一项挑战,而这一挑战落到了对人类意味着什么的根本问题上。

我们现在知道,要构建一个完善的道德框架,必须将AI精简到其基本要点,并需要采用一种强调上下文的方法来强调结果的质量。与工作场所多元化的基本原理一样,步骤很简单:

密切注意数据。 保持变化但标准化。 让团队不时监视预处理步骤。 在输出中消除任何形式的排除。 删除可能对模型错误或无用的垃圾值。 优化,审核,共享和重新收集结果,并将其纳入模型。 消除交互作用和数据孤岛,并始终进行健全性检查,以最终确定目标是什么。 消除数据孤岛,教AI思考而不是建模思考。 保持对Johari意识的关注。涵盖未知的已知和已知的未知。至于未知的未知数,不幸的是,这种偏见将始终存在。

相关阅读:

适用于商业智能团队的优秀数据分析工具  

智慧引领农业转型 广西应用大数据推动春耕生产    

(编辑:应用网_阳江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读