旷视科技唐文斌:你到底给谁创造了什么样的价值?
落地,是2019年AI行业的共同话题,创造价值、降本增效,成为行业共识。 作为AI头雁公司、也即将成为AI创业第一股的旷视,又是怎样看待落地这个话题的? 而作为一位技术领袖,旷视联合创始人兼CTO唐文斌,又认为当下环境下有哪些技术创新的机会? AI 在MEET2020智能未来大会现场,作为在行业中摸爬滚打八年的实践者,唐文斌用四个字解答了人工智能落地的议题——价值创造。 要点 1、 AI落地必须回答产品经理灵魂拷问:你到底给谁创造了什么样的价值? 2、 AI的价值主要体现在三个方面:成本优化、效率提升、体验增强。 3、 AI在不同行业发展的速度不一样,有难有易,更容易发展起来的,是那些给予AI试错机会的场景。 4、 AIoT 是人工智能技术与产业深度结合的必经之路,因为硬件成本逐渐变得更低,5G让连接变得更迅捷,在这些基础之上实现非常好的IoT的连接后,就能够产生更多数据,让AI算法实现快速突破。 5、 AIoT在体系下有且仅有三种角色,分别是感知器、决策器、执行器,每个部分都有创新机会。 唐文斌演讲分享全文
谢谢大家!谢谢主持人对我们的介绍,其实AI公司做的事情并非光鲜亮丽,反而非常的实际、非常的累,所以今天我想讲点接地气的事情。 现在很多人都在讲AI,我们也可以看到AI技术确实给不同场景带来了很多应用,机器学习、深度学习都给计算机视觉、语音识别,NLP等一系列的技术提供了好的手段,使其性能有大幅度的增长。 因此,这也给不同产业带来了不一样的价值,从技术到产业落地的过程已经在实践、在发展了。 举个例子,我们现在可以通过计算机视觉帮助制造业厂商做缺陷检测,用机器人帮仓储物流行业降本增效,用AI的方式让你提前测试某款化妆品、衣服的上身效果,不用再出门去商场了。 不管是降低成本、提升效率还是增强体验,在很多场景中,AI都是用这样的方式来产生价值的。 但是这件事情并没有大家想象中的那么好。 在AI的热度之下,其实企业对AI如何落地、如何使用、如何给自己带来价值,是没有那么清楚的,落地的过程也没那么容易,这也是我一上来讲我们做的事情并没有那么光鲜,反而非常累的原因。 AI落地回归价值本身 这是Gartner统计的阻碍企业应用AI的原因,其中包括现有员工缺乏相关的技能、对AI的作用和用途不了解、缺乏数据、系统整合起来比较麻烦、场景不清晰、战略不清晰、隐私安全保护、价值不好衡量……一大堆的问题,其中有几个问题是比较关键的。 首先,我们做一个应用产品,需要尽可能控制成本,不管是算法研发的成本,还是技术应用的成本,我们必须要算这个账。这项技术/产品地使用带来的价值增量到底有多大?如果企业不采用这项技术/产品,成本相对而言是更低还是更高?你的ROI怎么样?这是我们必须要回答的问题。 第二,当我们在一个特定场景中落地的时候,需要一个完整的解决方案。如果你的方案不完整,不能帮用户解决切实的问题,企业怎么会用起来呢?所以需要明确的落地方案。 第三,需要更多的专业人员。因为理解技术和理解场景这两种知识往往分布在不同的人群,需要两类专业人员结合到一起,才能够深入到场景当中解决行业痛点、给客户带来真正的价值。 今天我们讲AI技术讲了很多,但AI本质上只是一个技术实现手段,最终大家都要回答产品经理的灵魂拷问: 你到底应用AI在这个场景给谁创造了什么样的价值?为什么你能行?为什么是现在? 这是最根本的问题,AI带来的价值有多大?客户愿不愿意用? 对于技术公司来讲,我们也需要回答这样的问题。我们需要从价值创造的角度、从需求侧来看是不是真的解决用户的痛点,技术应用能不能成规模,我们才会选择做这样的方向。 反过来讲,我们也要考虑技术能不能满足这样的场景。 任何技术,不管是人脸识别还是自动驾驶,都必须回答一个问题:你的技术成熟吗?性能足够解决这些问题吗? 我认为自动驾驶应该是从低速到高速的发展路径,先做低速自动驾驶,再做高速自动驾驶;应该是从受限场景到开放场景;应该是从运货到运人。因为自动驾驶是一个肩负着极重社会责任责任的应用,价值极其大,最终必将被人类所征服。但是它的技术也许需要三年、五年,或者十年,甚至更长的时间才能成熟。 自动驾驶是一个价值极其大的场景,自动驾驶必将被人们所征服。 所以我们在思考任何一个场景的时候,都需要回答本质问题: 你的价值到底够不够大? 技术能不能满足用户需求? 只有这两点结合起来,才能够给这个场景真正地创造价值。 从做错了也可以补救的场景开始 正是因为AI落地应用有需求侧的问题,有供给侧的技术问题,所以我们会看到不同的行业发展的速度不一样。有一些场景会相对简单,有些场景会相对的难。那什么场景更容易发展起来呢?我们觉得要先从你做错了也可以补救的场景开始。 举个例子,比如说我们现在做缺陷检测。缺陷检测场景的核心是“宁可错杀一千,不可放过一个”,错杀就错杀了,人工再来一遍就好了,通过人机结合的方式可以做到一个很好的体验。 此外在视觉识别的很多场景下,虽然AI只是起到辅助性的作用,但它帮助人提升效率、降低成本,在这些场景下,错误是可以补救的。所以虽然这种场景下AI的精度很重要,但它并没有那么关系重大,还有一定的容错率。 而在一些成败攸关的领域,比如自动驾驶,还有我们在做的生产制造、物流,都是一些更偏向主营业务线上的工具,我们有客户就提到:“如果你导致我的生产线停产几分钟,你就要给我相应的赔偿。” 因为任何意外停顿都会给客户的生产线带来巨大损失,在这样事关重大的场景,AI是不能出错的,否则付出的代价是很大的。 因此我们衡量AI落地领域热度的坐标系里有两个轴,一个轴是价值大不大,价值越大,这个领域越热门;另一个轴是技术行不行,技术越好,这个领域就会越热门。 所以AI可以赋能非常多的行业,但是当下这些行业还处在发展周期的不同位置上。 (编辑:应用网_阳江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |